Conjugate (nil) clean rings and Köthe’s problem
نویسندگان
چکیده
منابع مشابه
Strongly nil-clean corner rings
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
متن کاملCommutative Nil Clean Group Rings
In [5] and [6], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short article we characterize nil clean commutative group rings.
متن کاملNil-clean Companion Matrices
The classes of clean and nil-clean rings are closed with respect standard constructions as direct products and (triangular) matrix rings, cf. [12] resp. [4], while the classes of weakly (nil-)clean rings are not closed under these constructions. Moreover, while all matrix rings over fields are clean, [12] when we consider nil-clean rings there are strongly restrictions: if a matrix ring over a ...
متن کاملA note on uniquely (nil) clean ring
A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.
متن کاملGeneralized f-clean rings
In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2017
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498817500736